# Data Structure Questions and Answers-Binary Heap

## Click on any option to know the CORRECT ANSWERS

 Question 1
What is the space complexity of searching in a heap?
 A O(logn) B O(n) C O(1) D O(nlogn)

Question 1 Explanation:
None.

 Question 2
What is the best case complexity in builading a heap?
 A O(nlogn) B O(n2) C O(n*longn *logn) D O(n)

Question 2 Explanation:
The best case compexity occur in botton-up construction when we have a sortes array given.

 Question 3
Given the code, choose the correct option that is consistent with the code

	build(A, i) 	left-> 2*i 	right->2*i +1 	temp- > i 	if(left<= heap....length[A] ans A[left] >A[temp]) 	temp -> left 	if (right = heap....length[A] and A[right] > A[temp]) 	temp->right 	if temp!= i 	swap(A[i], A[temp]) 	build(A, temp)

Here A is the heap

 A It is the build function of max heap B It is the build function of min heap C It is general build function of any heap D None of the mentioned

Question 3 Explanation:
Since in every condition we are comparing the current value is less than the parent of that node.So this is build function of Max heap.

 Question 4
What is the location of parent node for any arbitary node i?
 A (i/2) position B (i+1)/ position C floor(i/2) position D ceil(i/2) position

Question 4 Explanation:
For any node child nodes are located at either 2*i, 2*i +1 So the parent node could be found by taking the floor of the half of child node.

 Question 5
State the complexity of algorithm gien below

	int function(vector<int> arr) 	int len=arr.length(); 	if(len==0) 	return; 	temp=arr[len-1]; 	arr.pop....back(); 	return temp;
 A o(n) B O(logn) C O(1) D O(n logn)