# Aptitude ratio MCQ

## Ratio

 Question 1 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If 40% of a number is equal to two-third of another number, what is the ratio of first number to the second number?
 A 5 : 3 B 3 : 7 C 7 : 3 D 2 : 5
Question 1 Explanation:
\begin{align} & {\text{Let}}\,40\% \,{\text{of}}\,A = \frac{2}{3}B \cr & {\text{Then}},\,\frac{{40A}}{{100}} = \frac{{2B}}{3} \cr & \Rightarrow \frac{{2A}}{5} = \frac{{2B}}{3} \cr & \Rightarrow \frac{A}{B} = \left( {\frac{2}{3} \times \frac{5}{2}} \right) = \frac{5}{3} \cr & \therefore A:B = 5:3. \cr\end{align}

 Question 2 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
Which of the following represents a correct proportion ?
 A 3 : 5 :: 2 : 5 B 13 : 11 ::5 : 4 C 30 : 45 ::13 : 24 D 12 : 9 ::16 : 12
Question 2 Explanation:
a : b :: c : d

a $\times$ d = b $\times$ c

So, go through options

(A). 9 $\times$ 16 = 12 $\times$ 12 (right)

(B). 13 $\times$ 4 = 11 $\times$ 5 (wrong)

(C). 30 $\times$ 24 = 45 $\times$ 13 (wrong)

(D). 3 $\times$ 5 = 5 $\times$ 2 (wrong)

So answer is 12 : 9 :: 16 : 12

 Question 3 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The sum of three numbers is 98. If the ratio of the first to second is 2 :3 and that of the second to the third is 5 : 8, then the second number is:
 A 30 B 58 C 20 D 48
Question 3 Explanation:
Let the three parts be A, B, C. Then,

A : B = 2 : 3 and B : C = 5 : 8 \begin{align} & = \left( {5 \times \frac{3}{5}} \right):\left( {8 \times \frac{3}{5}} \right) = 3:\frac{{24}}{5} \cr & \Rightarrow A:B:C = 2:3:\frac{{24}}{5} = 10:15:24 \cr & \Rightarrow B = \left( {98 \times \frac{{15}}{{49}}} \right) = 30. \cr\end{align}

 Question 4 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If A:B = 2:3, B:C = 4:5 and C:D = 5:9 then A:D is equal to:
 A 2:9 B 8:27 C 11:17 D 5:9
Question 4 Explanation:
\begin{align} & \frac{A}{D} = \left( {\frac{A}{B}} \right) \times \left( {B \times C} \right) \times \left( {\frac{C}{D}} \right) \cr & \,\,\,\,\,\,\,\,\, = \left( {\frac{2}{3}} \right) \times \left( {\frac{4}{5}} \right) \times \left( {\frac{5}{9}} \right) \cr & \,\,\,\,\,\,\,\,\, = \frac{{\left( {2 \times 4 \times 5} \right)}}{{\left( {3 \times 5 \times 9} \right)}} \cr & \,\,\,\,\,\,\,\,\, = \frac{8}{{27}} \cr & \,\,\,\,\,\,\,\,\, = 8:27 \cr\end{align}
 Question 5 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The ratio of age of two boys is 5 : 6. After two years the ratio will be 7 : 8. The ratio of their age after 12 years will be = ?
 A 17/18 B 22/24 C 15/16 D 11/12
Question 5 Explanation:
Ratio of ages of Boys A and B \begin{align} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{A}}:{\text{B}} \cr & {\text{Present age }}5x:6x \cr & \therefore {\text{After two years }} \cr & \therefore \frac{{5x + 2}}{{6x + 2}} = \frac{7}{8} \cr & \Rightarrow 40x + 16 = 42x + 14 \cr & \Rightarrow 2x = 2 \cr & \Rightarrow x = 1 \cr & \therefore {\text{Present age }} \cr & {\text{A}} = 5 \times 1 = 5 \cr & {\text{B}} = 6 \times 1 = 6 \cr & {\text{After 12 years}} \cr & {\text{A}} = 5 + 12 = 17 \cr & {\text{B}} = 6 + 12 = 18 \cr & \frac{{\text{A}}}{{\text{B}}} = \frac{{17}}{{18}} \cr\end{align}

 Question 6 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
Annual income of Amit and Veer are the ratio 3 : 2, while the ratio of their expenditure is 5 : 3. If at the end of the year each saves Rs. 1000. The annual income of Amit is = ?
 A Rs. 9000 B Rs. 8000 C Rs. 6000 D Rs. 7000
Question 6 Explanation:
 Amit : Veer Income 1 : 3 Expensex 5 : 3 Saving 1000 : 1000
∴ Income ⇒ expenses + Savings \begin{align} & \therefore \frac{{3x - 1000}}{{2x - 1000}} = \frac{5}{3} \cr & \Rightarrow 9x - 3000 = 10x - 5000 \cr & \Rightarrow x = 2000 \cr\end{align} ∴ Annual income of Amit is = 3x

= 3 $\times$ 2000

= Rs. 6000

 Question 7 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If 60% A = 3/4 of B, then A : B is
 A 9 : 20 B 20 : 9 C 5 : 4 D 4 : 5
Question 7 Explanation:
\begin{align} & {\text{60}}\% \,{\text{of}}\,{\text{A}} = \frac{{\text{3}}}{{\text{4}}}\,{\text{of}}\,{\text{B}} \cr & \Rightarrow \frac{{60}}{{100}}{\text{A}} = \frac{3}{4}\,{\text{B}} \cr & \Rightarrow \frac{{\text{3}}}{{\text{5}}}{\text{A = }}\frac{{\text{3}}}{{\text{4}}}\,{\text{B}} \cr & \Rightarrow \frac{{\text{A}}}{{\text{B}}}{\text{ = }}\frac{{\text{3}}}{{\text{4}}} \times \frac{{\text{5}}}{{\text{3}}} \cr & = \frac{5}{4} \cr\end{align}

 Question 8 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
Between two consecutive years my incomes are in the ratio of 2 : 3 and expenses in the ratio 5 : 9. If my income in the second year is Rs. 45000 and my expenses in the first year is Rs. 25000 my total savings for the two years is -
 A Rs. 15000 B Nil C Rs. 5000 D Rs. 10000
Question 8 Explanation:
Let income in the first year be Rs. x

And

expenses in the second year be Rs. y.

Then, \begin{align} & = \frac{x}{{45000}} = \frac{2}{3}\,{\text{and }}\,\frac{{25000}}{y} = \frac{5}{9} \cr & \Rightarrow x = \frac{{2 \times 45000}}{3} = 30000\,{\text{and}} \cr & \,\,\,\,\,\,\,y = \frac{{25000 \times 9}}{5} = 45000. \cr\end{align} ∴ Total savings for 2 years

= Rs. [(30000 - 25000) + (45000 - 45000)] = Rs. 5000

 Question 9 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
IF a : b = 5 : 7 and c : d = 2a : 3b then ac : bd is = ?
 A 50 : 147 B 20 : 38 C 10 : 21 D 50 : 151
Question 9 Explanation:
\begin{align} & {\text{a}}:{\text{b}}\,\,\,\,\,\,\,\,\,\,\,\,{\text{c}}:{\text{d}} \cr & 5:7\,\,\,\,\,\,\,\,\,\,\,\,\,2{\text{a}}:3{\text{b}} \cr & \frac{a}{b} = \frac{5}{7},\,\frac{c}{d} = \frac{{2a}}{{3b}} \cr & = \frac{2}{3} \times \frac{5}{7} = \frac{{10}}{{21}} \cr & \therefore ac:bd = \frac{{{\text{ac}}}}{{{\text{bd}}}} = \frac{5}{7} \times \frac{{10}}{{21}} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{50}}{{147}} = 50:147 \cr\end{align}

 Question 10 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The salaries A, B, C are in the ratio 2 : 3 : 5. If the increments of 15%, 10% and 20% are allowed respectively in their salaries, then what will be new ratio of their salaries?
 A Cannot be determined B 3 : 3 : 10 C 23 : 33 : 60 D 10 : 11 : 20
Question 10 Explanation:
\begin{align} & {\text{Let}}, \cr & A = 2k \cr & B = 3k\,{\text{and}} \cr & C\, = 5k. \cr & A's\,{\text{new}}\,{\text{salary}} \cr & = \frac{{115}}{{100}}\,of\,2k = \left( {\frac{{115}}{{100}} \times 2k} \right) = \frac{{23k}}{{10}} \cr & B's\,{\text{new}}\,{\text{salary}} \cr & = \frac{{110}}{{100}}\,of\,3k = \left( {\frac{{110}}{{100}} \times 3k} \right) = \frac{{33k}}{{10}} \cr & C's\,{\text{new}}\,{\text{salary}} \cr & = \frac{{120}}{{100}}\,of\,5k = \left( {\frac{{120}}{{100}} \times 5k} \right) = 6k \cr & \therefore {\text{New}}\,{\text{ratio}} \cr & \left( {\frac{{23k}}{{10}}:\frac{{33k}}{{10}}:6k} \right) = 23:33:60 \cr\end{align}
 Question 11 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
In a bag, there are coins of 25 p, 10 p and 5 p in the ratio of 1 : 2 : 3. If there is Rs. 30 in all, how many 5 p coins are there?
 A 200 B 100 C 150 D 50
Question 11 Explanation:
Let the number of 25 p, 10 p and 5 p coins be x, 2x, 3x respectively.

Then, sum of their values \begin{align} & = Rs.\,\left( {\frac{{25x}}{{100}} + \frac{{10 \times 2x}}{{100}} + \frac{{5 \times 3x}}{{100}}} \right) \cr & = Rs.\,\frac{{60x}}{{100}} \cr & \therefore \frac{{60x}}{{100}} = 30 \Leftrightarrow x = \frac{{30 \times 100}}{{60}} = 50 \cr & {\text{Hence,}}\,{\text{the}}\,{\text{number}}\,{\text{of}}\,{\text{5p}}\,{\text{coins}} \cr & = \left( {3 \times 50} \right) \cr & = 150 \cr\end{align}

 Question 12 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
A person divided Rs. 10800 among his three sons in the ratio 3 : 4 : 5. Second son kept Rs. 1000 for himself, gave Rs. 600 to his wife and divided the remaining money among his two daughters in the ratio 11 : 9. Then one of his daughters received.
 A Rs. 1000 B Rs. 1050 C Rs. 1150 D Rs. 1100
Question 12 Explanation:
\begin{align} & {\text{Second son's share}} \cr & = {\text{Rs}}{\text{.}}\left( {10800 \times \frac{4}{{12}}} \right) \cr & = {\text{Rs}}{\text{. }}3600. \cr\end{align} Money distributed between the two daughters

= Rs. [3600 - (1000 + 600)]

= Rs. 2000 \begin{align} & {\text{First daughter's share}} \cr & = {\text{Rs}}{\text{.}}\left( {2000 \times \frac{{11}}{{20}}} \right) \cr & = {\text{Rs}}.1100. \cr & {\text{Second daughter's share}} \cr & = {\text{Rs}}{\text{.}}\left( {2000 \times \frac{9}{{20}}} \right) \cr & = {\text{Rs}}{\text{.9}}00. \cr\end{align}

 Question 13 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The incomes of A and B are in the ratio 3:2 and their expenditure are in ratio 5:3. If each saves Rs. 1000, then, A's income can be:
 A Rs. 9000 B Rs. 3000 C Rs. 6000 D Rs. 4000
Question 13 Explanation:
Let income of A and B be 3x and 2x respectively. Also, their expenditure is 5y and 3y.

Now, according to question,

3x-5y = 1000 ------- (i)*3

2x-3y = 1000 ---------- (ii)*5

9x-15y-10x+15y = 3000-5000;

Or, -x = -2000;

Or, x = 2000;

Then, income of A = 3x = 3*2000 = Rs. 6000.

 Question 14 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The sum of the salaries of A and B is Rs. 2100. A spends 80% of his salary and B spends 70% of his salary. If their savings are in the proportion of 4 : 3, then what is the salary of A?
 A Rs. 1400 B Rs. 1200 C Rs. 700 D Rs. 900
Question 14 Explanation:
Clearly, A and B save 20% and 30% of their respective salaries.

Let the salaries of A and B be x and y respectively.

Then, \begin{align} & {\text{ = }}\frac{{{\text{20}}\% {\text{ of }}x}}{{{\text{30}}\% {\text{ of }}y}} = \frac{4}{3} \cr & \Rightarrow \frac{x}{5} \times \frac{{10}}{{3y}} = \frac{4}{3} \cr & \Rightarrow \frac{x}{y} = 2 \cr & \Rightarrow x = 2y. \cr & \therefore x + y = 2100 \cr & \Rightarrow 2y + y = 2100 \cr & \Rightarrow 3y = 2100 \cr & \Rightarrow y = 700. \cr & {\text{A's salary}} = x = 2y \cr & = {\text{Rs}}{\text{. }}\left( {2 \times 700} \right) \cr & = {\text{Rs}}{\text{. }}1400. \cr\end{align}

 Question 15 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If x : y = 7 : 3,then the value of $\frac{{xy + {y^2}}}{{{x^2} - {y^2}}}{\text{is}}$
 A 7/3 B 4/3 C 3/7 D 3/4
Question 15 Explanation:
\begin{align} & = \frac{x}{y} = \frac{7}{3} \cr & = \frac{{xy + {y^2}}}{{{x^2} - {y^2}}} \cr & = \frac{{\left( {\frac{x}{y}} \right) + 1}}{{\left( {\frac{{{x^2}}}{{{y^2}}}} \right) - 1}} \cr & = \frac{{\frac{7}{3} + 1}}{{{{\left( {\frac{7}{3}} \right)}^2} - 1}} \cr & = \frac{{10}}{3} \times \frac{9}{{40}} \cr & = \frac{3}{4}. \cr\end{align}

 Question 16 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If 2A = 3B = 4C, then A : B : C is equal to -
 A 6 : 4 : 3 B 3 : 4 : 6 C 2 : 3 : 4 D 4 : 3 : 2
Question 16 Explanation:
Let 2A = 3B = 4C = k \begin{align} & {\text{Then,}} \cr & A = \frac{k}{2}, \cr & B = \frac{k}{3}, \cr & C = \frac{k}{{4.}} \cr & \therefore {\text{A}}:{\text{B}}:{\text{C}} = \frac{k}{2}:\frac{k}{3}:\frac{k}{4} \cr & = \frac{1}{2}:\frac{1}{3}:\frac{1}{4} \cr & = 6:4:3. \cr\end{align}
 Question 17 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
Two numbers are such that the square of one is 224 less than 8 times the square of the other. If the numbers are in the ratio of 3 : 4, then their values are = ?
 A 6, 8 B 12, 16 C 9, 12 D 12, 9
Question 17 Explanation:
\begin{align} & {\text{Let number be }}x\& y \cr & {\text{Given,}} \cr & \,\,x:y \cr & \,\,\,\,3:4 \cr & \,3a:4a \cr & {\text{Now , given that}} \cr & \Rightarrow {\text{8}}{\left( {3a} \right)^2} = {\left( {4a} \right)^2} + 224 \cr & \Rightarrow 72{a^2} = 16{a^2} + 224 \cr & \Rightarrow 56{a^2} = 224 \cr & \Rightarrow {a^2} = 4 \cr & \Rightarrow a = 2 \cr & {\text{Numbers are}} \cr & x = 3 \times 2 = 6 \cr & y = 4 \times 2 = 8 \cr\end{align}

 Question 18 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The total number of boys in a school is 16% more than the total number of girls in the school. What is the respective ratio of the total number of boys to the total number of girls in the school ?
 A None of these B Cannot be determine C 25 : 29 D 29 : 35
Question 18 Explanation:
Let the number of girls be x.

Then, \begin{align} & {\text{Number of boys}} \cr & = 116\% {\text{ of }}x = \frac{{29}}{{25}}x. \cr & \therefore {\text{Required ratio}} \cr & = \frac{{29}}{{25}}x:x \cr & = 29:25. \cr\end{align}

 Question 19 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
a : b : c = 2 : 3 : 4 and 2a - 3b + 4c = 33, then the value of c is = ?
 A 9 B 66/7 C 12 D 6
Question 19 Explanation:
\begin{align} & a:b:c \cr & 2:3:4 \cr & {\text{Let }}2x:3x:4x \cr & \Rightarrow 2a - 3b + 4c = 33 \cr & \Rightarrow 2 \times 2x - 3 \times 3x + 4 \times 4x = 33 \cr & \Rightarrow 4x - 9x + 16x = 33 \cr & \Rightarrow 11x = 33 \cr & \Rightarrow x = 3 \cr & \therefore {\text{c}} \Rightarrow 4 \times 3 = 12 \cr\end{align}

 Question 20 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
8 litres are drawn from a cask filled with wine and is then filled with water. This operation is performed three more times. The ratio of the quantity of wine now left in cask to that of the total solution is 16:81. How much wine did the cask hold originally?
 A 45 litres B 24 litres C 44 litres D 49 litres
Question 20 Explanation:

Let the quantity of the wine in the cask originally be x litres.

Using formula:

Final Amount of solute that is not replaced = Initial Amount $\times$( Vol. after removal /Vol. after replacing)N

Where N = No. of operation done.

Then ratio of wine to total solution in cask after 4 operations,

\begin{align} & 1 \times {\left\{ {\left( {\frac{{x - 8}}{x}} \right)} \right\}^4} = \frac{{16}}{{81}} \cr & \Rightarrow 1 \times {\left\{ {\frac{{\left( {x - 8} \right)}}{x}} \right\}^4} = {\left( {\frac{2}{3}} \right)^4} \cr & \Rightarrow \frac{{\left( {x - 8} \right)}}{x} = \frac{2}{3} \cr & \Rightarrow 3x - 24 = 2x \cr & \Rightarrow x = 24\,{\text{litres}} \cr\end{align}

 Question 21 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
One - fourth of sixty percent of a number is equal to two - fifths of twenty percent of another number. What is the respective ratio of the first number to the second number ?
 A 5 : 9 B Cannot be determine C 4 : 7 D None of these
Question 21 Explanation:
Let the numbers be x and y \begin{align} & {\text{Then,}} \cr & = \frac{1}{4}{\text{ of }}\left( {60\% {\text{ of }}x} \right) \cr & = \frac{2}{9}{\text{ of }}\left( {20\% {\text{ of }}y} \right) \cr & \Rightarrow \left( {\frac{1}{4} \times \frac{{60}}{{100}} \times x} \right) = \left( {\frac{2}{5} \times \frac{{20}}{{100}} \times y} \right) \cr & \Rightarrow \frac{{3x}}{{20}} = \frac{{2y}}{{25}} \cr & \Rightarrow \frac{x}{y} = \frac{2}{{25}} \times \frac{{20}}{3} = \frac{8}{{15}} \cr & \Rightarrow \frac{{3x}}{{20}} = \frac{{2y}}{{25}} \cr & \Rightarrow \frac{x}{y} = \frac{2}{{25}} \times \frac{{20}}{3} = \frac{8}{{15}} \cr & \Rightarrow x:y = 8:15. \cr\end{align}

 Question 22 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The mean proportional between (3 + $\sqrt{2}$) and (12 - $\sqrt{32}$) is-
 A 2 $sqrt{7}$ B 6 C $\sqrt{7}$ D (15 - 3 $\sqrt{2}$)/2
Question 22 Explanation:
Required mean proportional \begin{align} & = \sqrt {\left( {3 + \sqrt 2 } \right)\left( {12 - \sqrt {32} } \right)} \cr & = \sqrt {\left( {3 + \sqrt 2 } \right)\left( {12 - 4\sqrt 2 } \right)} \cr & = \sqrt {36 - 8} \cr & = \sqrt {28} \cr & = 2\sqrt {7.} \cr\end{align}
 Question 23 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
Seema and Meena divide a sum of Rs. 25000 in the ratio of 3 : 2 respectively. If Rs. 5000 is added to each of their shares, what would be in the new ratio formed ?
 A 4 : 3 B 3 : 4 C 5 : 4 D 2 : 3
Question 23 Explanation:
\begin{align} & {\text{Seema's share}} \cr & = {\text{Rs}}{\text{.}}\left( {25000 \times \frac{3}{5}} \right) \cr & = {\text{Rs}}.15000. \cr & {\text{Meena's share}} \cr & = {\text{Rs}}{\text{.}}\left( {25000 \times \frac{2}{5}} \right) \cr & = {\text{Rs}}.10000. \cr\end{align} ∴ Required ration

= (15000 + 5000) : (10000 + 5000)

= 4 : 3

 Question 24 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
If 5.5 of a = 0.65 of b, then a : b is equal to = ?
 A 13 : 110 B 11 : 13 C 13 : 11 D 110 : 13
Question 24 Explanation:
\begin{align} & 5.5{\text{a}} = 0.65{\text{b}} \cr & \Rightarrow \frac{{55}}{{10}}{\text{a}} = \frac{{65}}{{100}}{\text{b}} \cr & \Rightarrow 55{\text{a}} = \frac{{65}}{{10}}{\text{b}} \cr & \Rightarrow 550{\text{a}} = 65{\text{b}} \cr & {\text{a}}:{\text{b}} = 65:550 \cr & \,\,\,\,\,\,\,\,\,\,\,\, = 13:110 \cr\end{align}
 Question 25 ->Click on any option to know the correct answers (सही उत्तर जानने के लिए किसी भी Choice पर क्लिक करें)
The ratio of weekly income of A and B is 9 : 7 and the the ratio of their expenditure is 4 : 3. If each saves Rs. 200 per week, then the sum of their weekly income is = ?
 A Rs. 4800 B Rs. 3200 C Rs. 5600 D Rs. 3600
Question 25 Explanation:
 A : B Income 9 : 7 Expense 4 : 3
Income - Savings + Expenditure \begin{align} & \therefore \frac{{9x - 200}}{{7x - 200}} = \frac{4}{3} \cr & \Rightarrow 27x - 600 = 28x - 800 \cr & \Rightarrow x = 200 \cr & {\text{Sum of weekly income}} \cr & = 9x + 7x = 16x \cr & = 16 \times 200 = {\text{Rs}}.\,3200 \cr\end{align}
There are 25 questions to complete.